123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- /**
- * SurfaceNets in JavaScript
- *
- * Written by Mikola Lysenko (C) 2012
- *
- * MIT License
- *
- * Based on: S.F. Gibson, 'Constrained Elastic Surface Nets'. (1998) MERL Tech Report.
- * from https://github.com/mikolalysenko/isosurface/tree/master
- *
- */
- let surfaceNet = ( dims, potential, bounds ) => {
-
-
- //Precompute edge table, like Paul Bourke does.
- // This saves a bit of time when computing the centroid of each boundary cell
- var cube_edges = new Int32Array(24) , edge_table = new Int32Array(256);
- (function() {
- //Initialize the cube_edges table
- // This is just the vertex number of each cube
- var k = 0;
- for(var i=0; i<8; ++i) {
- for(var j=1; j<=4; j<<=1) {
- var p = i^j;
- if(i <= p) {
- cube_edges[k++] = i;
- cube_edges[k++] = p;
- }
- }
- }
- //Initialize the intersection table.
- // This is a 2^(cube configuration) -> 2^(edge configuration) map
- // There is one entry for each possible cube configuration, and the output is a 12-bit vector enumerating all edges crossing the 0-level.
- for(var i=0; i<256; ++i) {
- var em = 0;
- for(var j=0; j<24; j+=2) {
- var a = !!(i & (1<<cube_edges[j]))
- , b = !!(i & (1<<cube_edges[j+1]));
- em |= a !== b ? (1 << (j >> 1)) : 0;
- }
- edge_table[i] = em;
- }
- })();
- //Internal buffer, this may get resized at run time
- var buffer = new Array(4096);
- (function() {
- for(var i=0; i<buffer.length; ++i) {
- buffer[i] = 0;
- }
- })();
- if(!bounds) {
- bounds = [[0,0,0],dims];
- }
-
- var scale = [0,0,0];
- var shift = [0,0,0];
- for(var i=0; i<3; ++i) {
- scale[i] = (bounds[1][i] - bounds[0][i]) / dims[i];
- shift[i] = bounds[0][i];
- }
-
- var vertices = []
- , faces = []
- , n = 0
- , x = [0, 0, 0]
- , R = [1, (dims[0]+1), (dims[0]+1)*(dims[1]+1)]
- , grid = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
- , buf_no = 1;
-
-
- //Resize buffer if necessary
- if(R[2] * 2 > buffer.length) {
- var ol = buffer.length;
- buffer.length = R[2] * 2;
- while(ol < buffer.length) {
- buffer[ol++] = 0;
- }
- }
-
- //March over the voxel grid
- for(x[2]=0; x[2]<dims[2]-1; ++x[2], n+=dims[0], buf_no ^= 1, R[2]=-R[2]) {
-
- //m is the pointer into the buffer we are going to use.
- //This is slightly obtuse because javascript does not have good support for packed data structures, so we must use typed arrays :(
- //The contents of the buffer will be the indices of the vertices on the previous x/y slice of the volume
- var m = 1 + (dims[0]+1) * (1 + buf_no * (dims[1]+1));
-
- for(x[1]=0; x[1]<dims[1]-1; ++x[1], ++n, m+=2)
- for(x[0]=0; x[0]<dims[0]-1; ++x[0], ++n, ++m) {
-
- //Read in 8 field values around this vertex and store them in an array
- //Also calculate 8-bit mask, like in marching cubes, so we can speed up sign checks later
- var mask = 0, g = 0;
- for(var k=0; k<2; ++k)
- for(var j=0; j<2; ++j)
- for(var i=0; i<2; ++i, ++g) {
- var p = potential(
- scale[0]*(x[0]+i)+shift[0],
- scale[1]*(x[1]+j)+shift[1],
- scale[2]*(x[2]+k)+shift[2]);
- grid[g] = p;
- mask |= (p < 0) ? (1<<g) : 0;
- }
-
- //Check for early termination if cell does not intersect boundary
- if(mask === 0 || mask === 0xff) {
- continue;
- }
-
- //Sum up edge intersections
- var edge_mask = edge_table[mask]
- , v = [0.0,0.0,0.0]
- , e_count = 0;
-
- //For every edge of the cube...
- for(var i=0; i<12; ++i) {
-
- //Use edge mask to check if it is crossed
- if(!(edge_mask & (1<<i))) {
- continue;
- }
-
- //If it did, increment number of edge crossings
- ++e_count;
-
- //Now find the point of intersection
- var e0 = cube_edges[ i<<1 ] //Unpack vertices
- , e1 = cube_edges[(i<<1)+1]
- , g0 = grid[e0] //Unpack grid values
- , g1 = grid[e1]
- , t = g0 - g1; //Compute point of intersection
- if(Math.abs(t) > 1e-6) {
- t = g0 / t;
- } else {
- continue;
- }
-
- //Interpolate vertices and add up intersections (this can be done without multiplying)
- for(var j=0, k=1; j<3; ++j, k<<=1) {
- var a = e0 & k
- , b = e1 & k;
- if(a !== b) {
- v[j] += a ? 1.0 - t : t;
- } else {
- v[j] += a ? 1.0 : 0;
- }
- }
- }
-
- //Now we just average the edge intersections and add them to coordinate
- var s = 1.0 / e_count;
- for(var i=0; i<3; ++i) {
- v[i] = scale[i] * (x[i] + s * v[i]) + shift[i];
- }
-
- //Add vertex to buffer, store pointer to vertex index in buffer
- buffer[m] = vertices.length;
- vertices.push(v);
-
- //Now we need to add faces together, to do this we just loop over 3 basis components
- for(var i=0; i<3; ++i) {
- //The first three entries of the edge_mask count the crossings along the edge
- if(!(edge_mask & (1<<i)) ) {
- continue;
- }
-
- // i = axes we are point along. iu, iv = orthogonal axes
- var iu = (i+1)%3
- , iv = (i+2)%3;
-
- //If we are on a boundary, skip it
- if(x[iu] === 0 || x[iv] === 0) {
- continue;
- }
-
- //Otherwise, look up adjacent edges in buffer
- var du = R[iu]
- , dv = R[iv];
-
- //Remember to flip orientation depending on the sign of the corner.
- if(mask & 1) {
- faces.push([buffer[m], buffer[m-du], buffer[m-dv]]);
- faces.push([buffer[m-dv], buffer[m-du], buffer[m-du-dv]]);
- } else {
- faces.push([buffer[m], buffer[m-dv], buffer[m-du]]);
- faces.push([buffer[m-du], buffer[m-dv], buffer[m-du-dv]]);
- }
- }
- }
- }
-
- //All done! Return the result
- return { positions: vertices, cells: faces };
- }
- export { surfaceNet }
|