NURBSUtils.js 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. import {
  2. Vector3,
  3. Vector4
  4. } from 'three';
  5. /**
  6. * @module NURBSUtils
  7. * @three_import import * as NURBSUtils from 'three/addons/curves/NURBSUtils.js';
  8. */
  9. /**
  10. * Finds knot vector span.
  11. *
  12. * @param {number} p - The degree.
  13. * @param {number} u - The parametric value.
  14. * @param {Array<number>} U - The knot vector.
  15. * @return {number} The span.
  16. */
  17. function findSpan( p, u, U ) {
  18. const n = U.length - p - 1;
  19. if ( u >= U[ n ] ) {
  20. return n - 1;
  21. }
  22. if ( u <= U[ p ] ) {
  23. return p;
  24. }
  25. let low = p;
  26. let high = n;
  27. let mid = Math.floor( ( low + high ) / 2 );
  28. while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
  29. if ( u < U[ mid ] ) {
  30. high = mid;
  31. } else {
  32. low = mid;
  33. }
  34. mid = Math.floor( ( low + high ) / 2 );
  35. }
  36. return mid;
  37. }
  38. /**
  39. * Calculates basis functions. See The NURBS Book, page 70, algorithm A2.2.
  40. *
  41. * @param {number} span - The span in which `u` lies.
  42. * @param {number} u - The parametric value.
  43. * @param {number} p - The degree.
  44. * @param {Array<number>} U - The knot vector.
  45. * @return {Array<number>} Array[p+1] with basis functions values.
  46. */
  47. function calcBasisFunctions( span, u, p, U ) {
  48. const N = [];
  49. const left = [];
  50. const right = [];
  51. N[ 0 ] = 1.0;
  52. for ( let j = 1; j <= p; ++ j ) {
  53. left[ j ] = u - U[ span + 1 - j ];
  54. right[ j ] = U[ span + j ] - u;
  55. let saved = 0.0;
  56. for ( let r = 0; r < j; ++ r ) {
  57. const rv = right[ r + 1 ];
  58. const lv = left[ j - r ];
  59. const temp = N[ r ] / ( rv + lv );
  60. N[ r ] = saved + rv * temp;
  61. saved = lv * temp;
  62. }
  63. N[ j ] = saved;
  64. }
  65. return N;
  66. }
  67. /**
  68. * Calculates B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
  69. *
  70. * @param {number} p - The degree of the B-Spline.
  71. * @param {Array<number>} U - The knot vector.
  72. * @param {Array<Vector4>} P - The control points
  73. * @param {number} u - The parametric point.
  74. * @return {Vector4} The point for given `u`.
  75. */
  76. function calcBSplinePoint( p, U, P, u ) {
  77. const span = findSpan( p, u, U );
  78. const N = calcBasisFunctions( span, u, p, U );
  79. const C = new Vector4( 0, 0, 0, 0 );
  80. for ( let j = 0; j <= p; ++ j ) {
  81. const point = P[ span - p + j ];
  82. const Nj = N[ j ];
  83. const wNj = point.w * Nj;
  84. C.x += point.x * wNj;
  85. C.y += point.y * wNj;
  86. C.z += point.z * wNj;
  87. C.w += point.w * Nj;
  88. }
  89. return C;
  90. }
  91. /**
  92. * Calculates basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
  93. *
  94. * @param {number} span - The span in which `u` lies.
  95. * @param {number} u - The parametric point.
  96. * @param {number} p - The degree.
  97. * @param {number} n - number of derivatives to calculate
  98. * @param {Array<number>} U - The knot vector.
  99. * @return {Array<Array<number>>} An array[n+1][p+1] with basis functions derivatives.
  100. */
  101. function calcBasisFunctionDerivatives( span, u, p, n, U ) {
  102. const zeroArr = [];
  103. for ( let i = 0; i <= p; ++ i )
  104. zeroArr[ i ] = 0.0;
  105. const ders = [];
  106. for ( let i = 0; i <= n; ++ i )
  107. ders[ i ] = zeroArr.slice( 0 );
  108. const ndu = [];
  109. for ( let i = 0; i <= p; ++ i )
  110. ndu[ i ] = zeroArr.slice( 0 );
  111. ndu[ 0 ][ 0 ] = 1.0;
  112. const left = zeroArr.slice( 0 );
  113. const right = zeroArr.slice( 0 );
  114. for ( let j = 1; j <= p; ++ j ) {
  115. left[ j ] = u - U[ span + 1 - j ];
  116. right[ j ] = U[ span + j ] - u;
  117. let saved = 0.0;
  118. for ( let r = 0; r < j; ++ r ) {
  119. const rv = right[ r + 1 ];
  120. const lv = left[ j - r ];
  121. ndu[ j ][ r ] = rv + lv;
  122. const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
  123. ndu[ r ][ j ] = saved + rv * temp;
  124. saved = lv * temp;
  125. }
  126. ndu[ j ][ j ] = saved;
  127. }
  128. for ( let j = 0; j <= p; ++ j ) {
  129. ders[ 0 ][ j ] = ndu[ j ][ p ];
  130. }
  131. for ( let r = 0; r <= p; ++ r ) {
  132. let s1 = 0;
  133. let s2 = 1;
  134. const a = [];
  135. for ( let i = 0; i <= p; ++ i ) {
  136. a[ i ] = zeroArr.slice( 0 );
  137. }
  138. a[ 0 ][ 0 ] = 1.0;
  139. for ( let k = 1; k <= n; ++ k ) {
  140. let d = 0.0;
  141. const rk = r - k;
  142. const pk = p - k;
  143. if ( r >= k ) {
  144. a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
  145. d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
  146. }
  147. const j1 = ( rk >= - 1 ) ? 1 : - rk;
  148. const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
  149. for ( let j = j1; j <= j2; ++ j ) {
  150. a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
  151. d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
  152. }
  153. if ( r <= pk ) {
  154. a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
  155. d += a[ s2 ][ k ] * ndu[ r ][ pk ];
  156. }
  157. ders[ k ][ r ] = d;
  158. const j = s1;
  159. s1 = s2;
  160. s2 = j;
  161. }
  162. }
  163. let r = p;
  164. for ( let k = 1; k <= n; ++ k ) {
  165. for ( let j = 0; j <= p; ++ j ) {
  166. ders[ k ][ j ] *= r;
  167. }
  168. r *= p - k;
  169. }
  170. return ders;
  171. }
  172. /**
  173. * Calculates derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
  174. *
  175. * @param {number} p - The degree.
  176. * @param {Array<number>} U - The knot vector.
  177. * @param {Array<Vector4>} P - The control points
  178. * @param {number} u - The parametric point.
  179. * @param {number} nd - The number of derivatives.
  180. * @return {Array<Vector4>} An array[d+1] with derivatives.
  181. */
  182. function calcBSplineDerivatives( p, U, P, u, nd ) {
  183. const du = nd < p ? nd : p;
  184. const CK = [];
  185. const span = findSpan( p, u, U );
  186. const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
  187. const Pw = [];
  188. for ( let i = 0; i < P.length; ++ i ) {
  189. const point = P[ i ].clone();
  190. const w = point.w;
  191. point.x *= w;
  192. point.y *= w;
  193. point.z *= w;
  194. Pw[ i ] = point;
  195. }
  196. for ( let k = 0; k <= du; ++ k ) {
  197. const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
  198. for ( let j = 1; j <= p; ++ j ) {
  199. point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
  200. }
  201. CK[ k ] = point;
  202. }
  203. for ( let k = du + 1; k <= nd + 1; ++ k ) {
  204. CK[ k ] = new Vector4( 0, 0, 0 );
  205. }
  206. return CK;
  207. }
  208. /**
  209. * Calculates "K over I".
  210. *
  211. * @param {number} k - The K value.
  212. * @param {number} i - The I value.
  213. * @return {number} k!/(i!(k-i)!)
  214. */
  215. function calcKoverI( k, i ) {
  216. let nom = 1;
  217. for ( let j = 2; j <= k; ++ j ) {
  218. nom *= j;
  219. }
  220. let denom = 1;
  221. for ( let j = 2; j <= i; ++ j ) {
  222. denom *= j;
  223. }
  224. for ( let j = 2; j <= k - i; ++ j ) {
  225. denom *= j;
  226. }
  227. return nom / denom;
  228. }
  229. /**
  230. * Calculates derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
  231. *
  232. * @param {Array<Vector4>} Pders - Array with derivatives.
  233. * @return {Array<Vector3>} An array with derivatives for rational curve.
  234. */
  235. function calcRationalCurveDerivatives( Pders ) {
  236. const nd = Pders.length;
  237. const Aders = [];
  238. const wders = [];
  239. for ( let i = 0; i < nd; ++ i ) {
  240. const point = Pders[ i ];
  241. Aders[ i ] = new Vector3( point.x, point.y, point.z );
  242. wders[ i ] = point.w;
  243. }
  244. const CK = [];
  245. for ( let k = 0; k < nd; ++ k ) {
  246. const v = Aders[ k ].clone();
  247. for ( let i = 1; i <= k; ++ i ) {
  248. v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
  249. }
  250. CK[ k ] = v.divideScalar( wders[ 0 ] );
  251. }
  252. return CK;
  253. }
  254. /**
  255. * Calculates NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
  256. *
  257. * @param {number} p - The degree.
  258. * @param {Array<number>} U - The knot vector.
  259. * @param {Array<Vector4>} P - The control points in homogeneous space.
  260. * @param {number} u - The parametric point.
  261. * @param {number} nd - The number of derivatives.
  262. * @return {Array<Vector3>} array with derivatives for rational curve.
  263. */
  264. function calcNURBSDerivatives( p, U, P, u, nd ) {
  265. const Pders = calcBSplineDerivatives( p, U, P, u, nd );
  266. return calcRationalCurveDerivatives( Pders );
  267. }
  268. /**
  269. * Calculates a rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
  270. *
  271. * @param {number} p - The first degree of B-Spline surface.
  272. * @param {number} q - The second degree of B-Spline surface.
  273. * @param {Array<number>} U - The first knot vector.
  274. * @param {Array<number>} V - The second knot vector.
  275. * @param {Array<Array<Vector4>>} P - The control points in homogeneous space.
  276. * @param {number} u - The first parametric point.
  277. * @param {number} v - The second parametric point.
  278. * @param {Vector3} target - The target vector.
  279. */
  280. function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
  281. const uspan = findSpan( p, u, U );
  282. const vspan = findSpan( q, v, V );
  283. const Nu = calcBasisFunctions( uspan, u, p, U );
  284. const Nv = calcBasisFunctions( vspan, v, q, V );
  285. const temp = [];
  286. for ( let l = 0; l <= q; ++ l ) {
  287. temp[ l ] = new Vector4( 0, 0, 0, 0 );
  288. for ( let k = 0; k <= p; ++ k ) {
  289. const point = P[ uspan - p + k ][ vspan - q + l ].clone();
  290. const w = point.w;
  291. point.x *= w;
  292. point.y *= w;
  293. point.z *= w;
  294. temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
  295. }
  296. }
  297. const Sw = new Vector4( 0, 0, 0, 0 );
  298. for ( let l = 0; l <= q; ++ l ) {
  299. Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
  300. }
  301. Sw.divideScalar( Sw.w );
  302. target.set( Sw.x, Sw.y, Sw.z );
  303. }
  304. /**
  305. * Calculates a rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
  306. *
  307. * @param {number} p - The first degree of B-Spline surface.
  308. * @param {number} q - The second degree of B-Spline surface.
  309. * @param {number} r - The third degree of B-Spline surface.
  310. * @param {Array<number>} U - The first knot vector.
  311. * @param {Array<number>} V - The second knot vector.
  312. * @param {Array<number>} W - The third knot vector.
  313. * @param {Array<Array<Array<Vector4>>>} P - The control points in homogeneous space.
  314. * @param {number} u - The first parametric point.
  315. * @param {number} v - The second parametric point.
  316. * @param {number} w - The third parametric point.
  317. * @param {Vector3} target - The target vector.
  318. */
  319. function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {
  320. const uspan = findSpan( p, u, U );
  321. const vspan = findSpan( q, v, V );
  322. const wspan = findSpan( r, w, W );
  323. const Nu = calcBasisFunctions( uspan, u, p, U );
  324. const Nv = calcBasisFunctions( vspan, v, q, V );
  325. const Nw = calcBasisFunctions( wspan, w, r, W );
  326. const temp = [];
  327. for ( let m = 0; m <= r; ++ m ) {
  328. temp[ m ] = [];
  329. for ( let l = 0; l <= q; ++ l ) {
  330. temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
  331. for ( let k = 0; k <= p; ++ k ) {
  332. const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
  333. const w = point.w;
  334. point.x *= w;
  335. point.y *= w;
  336. point.z *= w;
  337. temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );
  338. }
  339. }
  340. }
  341. const Sw = new Vector4( 0, 0, 0, 0 );
  342. for ( let m = 0; m <= r; ++ m ) {
  343. for ( let l = 0; l <= q; ++ l ) {
  344. Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );
  345. }
  346. }
  347. Sw.divideScalar( Sw.w );
  348. target.set( Sw.x, Sw.y, Sw.z );
  349. }
  350. export {
  351. findSpan,
  352. calcBasisFunctions,
  353. calcBSplinePoint,
  354. calcBasisFunctionDerivatives,
  355. calcBSplineDerivatives,
  356. calcKoverI,
  357. calcRationalCurveDerivatives,
  358. calcNURBSDerivatives,
  359. calcSurfacePoint,
  360. calcVolumePoint,
  361. };