123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695 |
- import {
- Line3,
- Plane,
- Triangle,
- Vector3
- } from 'three';
- const Visible = 0;
- const Deleted = 1;
- const _v1 = new Vector3();
- const _line3 = new Line3();
- const _plane = new Plane();
- const _closestPoint = new Vector3();
- const _triangle = new Triangle();
- /**
- * Can be used to compute the convex hull in 3D space for a given set of points. It
- * is primarily intended for {@link ConvexGeometry}.
- *
- * This Quickhull 3D implementation is a port of [quickhull3d]{@link https://github.com/maurizzzio/quickhull3d/}
- * by Mauricio Poppe.
- *
- * @three_import import { ConvexHull } from 'three/addons/math/ConvexHull.js';
- */
- class ConvexHull {
- /**
- * Constructs a new convex hull.
- */
- constructor() {
- this.tolerance = - 1;
- this.faces = []; // the generated faces of the convex hull
- this.newFaces = []; // this array holds the faces that are generated within a single iteration
- // the vertex lists work as follows:
- //
- // let 'a' and 'b' be 'Face' instances
- // let 'v' be points wrapped as instance of 'Vertex'
- //
- // [v, v, ..., v, v, v, ...]
- // ^ ^
- // | |
- // a.outside b.outside
- //
- this.assigned = new VertexList();
- this.unassigned = new VertexList();
- this.vertices = []; // vertices of the hull (internal representation of given geometry data)
- }
- /**
- * Computes to convex hull for the given array of points.
- *
- * @param {Array<Vector3>} points - The array of points in 3D space.
- * @return {ConvexHull} A reference to this convex hull.
- */
- setFromPoints( points ) {
- // The algorithm needs at least four points.
- if ( points.length >= 4 ) {
- this.makeEmpty();
- for ( let i = 0, l = points.length; i < l; i ++ ) {
- this.vertices.push( new VertexNode( points[ i ] ) );
- }
- this._compute();
- }
- return this;
- }
- /**
- * Computes the convex hull of the given 3D object (including its descendants),
- * accounting for the world transforms of both the 3D object and its descendants.
- *
- * @param {Object3D} object - The 3D object to compute the convex hull for.
- * @return {ConvexHull} A reference to this convex hull.
- */
- setFromObject( object ) {
- const points = [];
- object.updateMatrixWorld( true );
- object.traverse( function ( node ) {
- const geometry = node.geometry;
- if ( geometry !== undefined ) {
- const attribute = geometry.attributes.position;
- if ( attribute !== undefined ) {
- for ( let i = 0, l = attribute.count; i < l; i ++ ) {
- const point = new Vector3();
- point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
- points.push( point );
- }
- }
- }
- } );
- return this.setFromPoints( points );
- }
- /**
- * Returns `true` if the given point lies in the convex hull.
- *
- * @param {Vector3} point - The point to test.
- * @return {boolean} Whether the given point lies in the convex hull or not.
- */
- containsPoint( point ) {
- const faces = this.faces;
- for ( let i = 0, l = faces.length; i < l; i ++ ) {
- const face = faces[ i ];
- // compute signed distance and check on what half space the point lies
- if ( face.distanceToPoint( point ) > this.tolerance ) return false;
- }
- return true;
- }
- /**
- * Computes the intersections point of the given ray and this convex hull.
- *
- * @param {Ray} ray - The ray to test.
- * @param {Vector3} target - The target vector that is used to store the method's result.
- * @return {Vector3|null} The intersection point. Returns `null` if not intersection was detected.
- */
- intersectRay( ray, target ) {
- // based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
- const faces = this.faces;
- let tNear = - Infinity;
- let tFar = Infinity;
- for ( let i = 0, l = faces.length; i < l; i ++ ) {
- const face = faces[ i ];
- // interpret faces as planes for the further computation
- const vN = face.distanceToPoint( ray.origin );
- const vD = face.normal.dot( ray.direction );
- // if the origin is on the positive side of a plane (so the plane can "see" the origin) and
- // the ray is turned away or parallel to the plane, there is no intersection
- if ( vN > 0 && vD >= 0 ) return null;
- // compute the distance from the ray’s origin to the intersection with the plane
- const t = ( vD !== 0 ) ? ( - vN / vD ) : 0;
- // only proceed if the distance is positive. a negative distance means the intersection point
- // lies "behind" the origin
- if ( t <= 0 ) continue;
- // now categorized plane as front-facing or back-facing
- if ( vD > 0 ) {
- // plane faces away from the ray, so this plane is a back-face
- tFar = Math.min( t, tFar );
- } else {
- // front-face
- tNear = Math.max( t, tNear );
- }
- if ( tNear > tFar ) {
- // if tNear ever is greater than tFar, the ray must miss the convex hull
- return null;
- }
- }
- // evaluate intersection point
- // always try tNear first since its the closer intersection point
- if ( tNear !== - Infinity ) {
- ray.at( tNear, target );
- } else {
- ray.at( tFar, target );
- }
- return target;
- }
- /**
- * Returns `true` if the given ray intersects with this convex hull.
- *
- * @param {Ray} ray - The ray to test.
- * @return {boolean} Whether the given ray intersects with this convex hull or not.
- */
- intersectsRay( ray ) {
- return this.intersectRay( ray, _v1 ) !== null;
- }
- /**
- * Makes the convex hull empty.
- *
- * @return {ConvexHull} A reference to this convex hull.
- */
- makeEmpty() {
- this.faces = [];
- this.vertices = [];
- return this;
- }
- // private
- /**
- * Adds a vertex to the 'assigned' list of vertices and assigns it to the given face.
- *
- * @private
- * @param {VertexNode} vertex - The vertex to add.
- * @param {Face} face - The target face.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _addVertexToFace( vertex, face ) {
- vertex.face = face;
- if ( face.outside === null ) {
- this.assigned.append( vertex );
- } else {
- this.assigned.insertBefore( face.outside, vertex );
- }
- face.outside = vertex;
- return this;
- }
- /**
- * Removes a vertex from the 'assigned' list of vertices and from the given face.
- * It also makes sure that the link from 'face' to the first vertex it sees in 'assigned'
- * is linked correctly after the removal.
- *
- * @private
- * @param {VertexNode} vertex - The vertex to remove.
- * @param {Face} face - The target face.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _removeVertexFromFace( vertex, face ) {
- if ( vertex === face.outside ) {
- // fix face.outside link
- if ( vertex.next !== null && vertex.next.face === face ) {
- // face has at least 2 outside vertices, move the 'outside' reference
- face.outside = vertex.next;
- } else {
- // vertex was the only outside vertex that face had
- face.outside = null;
- }
- }
- this.assigned.remove( vertex );
- return this;
- }
- /**
- * Removes all the visible vertices that a given face is able to see which are stored in
- * the 'assigned' vertex list.
- *
- * @private
- * @param {Face} face - The target face.
- * @return {VertexNode|undefined} A reference to this convex hull.
- */
- _removeAllVerticesFromFace( face ) {
- if ( face.outside !== null ) {
- // reference to the first and last vertex of this face
- const start = face.outside;
- let end = face.outside;
- while ( end.next !== null && end.next.face === face ) {
- end = end.next;
- }
- this.assigned.removeSubList( start, end );
- // fix references
- start.prev = end.next = null;
- face.outside = null;
- return start;
- }
- }
- /**
- * Removes all the visible vertices that `face` is able to see.
- *
- * - If `absorbingFace` doesn't exist, then all the removed vertices will be added to the 'unassigned' vertex list.
- * - If `absorbingFace` exists, then this method will assign all the vertices of 'face' that can see 'absorbingFace'.
- * - If a vertex cannot see `absorbingFace`, it's added to the 'unassigned' vertex list.
- *
- * @private
- * @param {Face} face - The given face.
- * @param {Face} [absorbingFace] - An optional face that tries to absorb the vertices of the first face.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _deleteFaceVertices( face, absorbingFace ) {
- const faceVertices = this._removeAllVerticesFromFace( face );
- if ( faceVertices !== undefined ) {
- if ( absorbingFace === undefined ) {
- // mark the vertices to be reassigned to some other face
- this.unassigned.appendChain( faceVertices );
- } else {
- // if there's an absorbing face try to assign as many vertices as possible to it
- let vertex = faceVertices;
- do {
- // we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
- // will be changed by upcoming method calls
- const nextVertex = vertex.next;
- const distance = absorbingFace.distanceToPoint( vertex.point );
- // check if 'vertex' is able to see 'absorbingFace'
- if ( distance > this.tolerance ) {
- this._addVertexToFace( vertex, absorbingFace );
- } else {
- this.unassigned.append( vertex );
- }
- // now assign next vertex
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- }
- return this;
- }
- /**
- * Reassigns as many vertices as possible from the unassigned list to the new faces.
- *
- * @private
- * @param {Array<Face>} newFaces - The new faces.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _resolveUnassignedPoints( newFaces ) {
- if ( this.unassigned.isEmpty() === false ) {
- let vertex = this.unassigned.first();
- do {
- // buffer 'next' reference, see ._deleteFaceVertices()
- const nextVertex = vertex.next;
- let maxDistance = this.tolerance;
- let maxFace = null;
- for ( let i = 0; i < newFaces.length; i ++ ) {
- const face = newFaces[ i ];
- if ( face.mark === Visible ) {
- const distance = face.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = face;
- }
- if ( maxDistance > 1000 * this.tolerance ) break;
- }
- }
- // 'maxFace' can be null e.g. if there are identical vertices
- if ( maxFace !== null ) {
- this._addVertexToFace( vertex, maxFace );
- }
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- return this;
- }
- /**
- * Computes the extremes values (min/max vectors) which will be used to
- * compute the initial hull.
- *
- * @private
- * @return {Object} The extremes.
- */
- _computeExtremes() {
- const min = new Vector3();
- const max = new Vector3();
- const minVertices = [];
- const maxVertices = [];
- // initially assume that the first vertex is the min/max
- for ( let i = 0; i < 3; i ++ ) {
- minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];
- }
- min.copy( this.vertices[ 0 ].point );
- max.copy( this.vertices[ 0 ].point );
- // compute the min/max vertex on all six directions
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = this.vertices[ i ];
- const point = vertex.point;
- // update the min coordinates
- for ( let j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) < min.getComponent( j ) ) {
- min.setComponent( j, point.getComponent( j ) );
- minVertices[ j ] = vertex;
- }
- }
- // update the max coordinates
- for ( let j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) > max.getComponent( j ) ) {
- max.setComponent( j, point.getComponent( j ) );
- maxVertices[ j ] = vertex;
- }
- }
- }
- // use min/max vectors to compute an optimal epsilon
- this.tolerance = 3 * Number.EPSILON * (
- Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
- Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
- Math.max( Math.abs( min.z ), Math.abs( max.z ) )
- );
- return { min: minVertices, max: maxVertices };
- }
- /**
- * Computes the initial simplex assigning to its faces all the points that are
- * candidates to form part of the hull.
- *
- * @private
- * @return {ConvexHull} A reference to this convex hull.
- */
- _computeInitialHull() {
- const vertices = this.vertices;
- const extremes = this._computeExtremes();
- const min = extremes.min;
- const max = extremes.max;
- // 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
- // (max.x - min.x)
- // (max.y - min.y)
- // (max.z - min.z)
- let maxDistance = 0;
- let index = 0;
- for ( let i = 0; i < 3; i ++ ) {
- const distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- index = i;
- }
- }
- const v0 = min[ index ];
- const v1 = max[ index ];
- let v2;
- let v3;
- // 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
- maxDistance = 0;
- _line3.set( v0.point, v1.point );
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 ) {
- _line3.closestPointToPoint( vertex.point, true, _closestPoint );
- const distance = _closestPoint.distanceToSquared( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v2 = vertex;
- }
- }
- }
- // 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
- maxDistance = - 1;
- _plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {
- const distance = Math.abs( _plane.distanceToPoint( vertex.point ) );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v3 = vertex;
- }
- }
- }
- const faces = [];
- if ( _plane.distanceToPoint( v3.point ) < 0 ) {
- // the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
- faces.push(
- Face.create( v0, v1, v2 ),
- Face.create( v3, v1, v0 ),
- Face.create( v3, v2, v1 ),
- Face.create( v3, v0, v2 )
- );
- // set the twin edge
- for ( let i = 0; i < 3; i ++ ) {
- const j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );
- // join face[ i ] with face[ i + 1 ], 1 <= i <= 3
- faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );
- }
- } else {
- // the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
- faces.push(
- Face.create( v0, v2, v1 ),
- Face.create( v3, v0, v1 ),
- Face.create( v3, v1, v2 ),
- Face.create( v3, v2, v0 )
- );
- // set the twin edge
- for ( let i = 0; i < 3; i ++ ) {
- const j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );
- // join face[ i ] with face[ i + 1 ]
- faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );
- }
- }
- // the initial hull is the tetrahedron
- for ( let i = 0; i < 4; i ++ ) {
- this.faces.push( faces[ i ] );
- }
- // initial assignment of vertices to the faces of the tetrahedron
- for ( let i = 0, l = vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {
- maxDistance = this.tolerance;
- let maxFace = null;
- for ( let j = 0; j < 4; j ++ ) {
- const distance = this.faces[ j ].distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = this.faces[ j ];
- }
- }
- if ( maxFace !== null ) {
- this._addVertexToFace( vertex, maxFace );
- }
- }
- }
- return this;
- }
- /**
- * Removes inactive (e.g. deleted) faces from the internal face list.
- *
- * @private
- * @return {ConvexHull} A reference to this convex hull.
- */
- _reindexFaces() {
- const activeFaces = [];
- for ( let i = 0; i < this.faces.length; i ++ ) {
- const face = this.faces[ i ];
- if ( face.mark === Visible ) {
- activeFaces.push( face );
- }
- }
- this.faces = activeFaces;
- return this;
- }
- /**
- * Finds the next vertex to create faces with the current hull.
- *
- * - Let the initial face be the first face existing in the 'assigned' vertex list.
- * - If a face doesn't exist then return since there're no vertices left.
- * - Otherwise for each vertex that face sees find the one furthest away from it.
- *
- * @private
- * @return {?VertexNode} The next vertex to add.
- */
- _nextVertexToAdd() {
- // if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
- if ( this.assigned.isEmpty() === false ) {
- let eyeVertex, maxDistance = 0;
- // grab the first available face and start with the first visible vertex of that face
- const eyeFace = this.assigned.first().face;
- let vertex = eyeFace.outside;
- // now calculate the farthest vertex that face can see
- do {
- const distance = eyeFace.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- eyeVertex = vertex;
- }
- vertex = vertex.next;
- } while ( vertex !== null && vertex.face === eyeFace );
- return eyeVertex;
- }
- }
- /**
- * Computes a chain of half edges in CCW order called the 'horizon'. For an edge
- * to be part of the horizon it must join a face that can see 'eyePoint' and a face
- * that cannot see 'eyePoint'.
- *
- * @private
- * @param {Vector3} eyePoint - The 3D-coordinates of a point.
- * @param {HalfEdge} crossEdge - The edge used to jump to the current face.
- * @param {Face} face - The current face being tested.
- * @param {Array<HalfEdge>} horizon - The edges that form part of the horizon in CCW order.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _computeHorizon( eyePoint, crossEdge, face, horizon ) {
- // moves face's vertices to the 'unassigned' vertex list
- this._deleteFaceVertices( face );
- face.mark = Deleted;
- let edge;
- if ( crossEdge === null ) {
- edge = crossEdge = face.getEdge( 0 );
- } else {
- // start from the next edge since 'crossEdge' was already analyzed
- // (actually 'crossEdge.twin' was the edge who called this method recursively)
- edge = crossEdge.next;
- }
- do {
- const twinEdge = edge.twin;
- const oppositeFace = twinEdge.face;
- if ( oppositeFace.mark === Visible ) {
- if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {
- // the opposite face can see the vertex, so proceed with next edge
- this._computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );
- } else {
- // the opposite face can't see the vertex, so this edge is part of the horizon
- horizon.push( edge );
- }
- }
- edge = edge.next;
- } while ( edge !== crossEdge );
- return this;
- }
- /**
- * Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head'
- * in CCW order. All the half edges are created in CCW order thus the face is always pointing
- * outside the hull.
- *
- * @private
- * @param {VertexNode} eyeVertex - The vertex that is added to the hull.
- * @param {HalfEdge} horizonEdge - A single edge of the horizon.
- * @return {HalfEdge} The half edge whose vertex is the eyeVertex.
- */
- _addAdjoiningFace( eyeVertex, horizonEdge ) {
- // all the half edges are created in ccw order thus the face is always pointing outside the hull
- const face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );
- this.faces.push( face );
- // join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
- face.getEdge( - 1 ).setTwin( horizonEdge.twin );
- return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex
- }
- /**
- * Adds 'horizon.length' faces to the hull, each face will be linked with the horizon
- * opposite face and the face on the left/right.
- *
- * @private
- * @param {VertexNode} eyeVertex - The vertex that is added to the hull.
- * @param {Array<HalfEdge>} horizon - The horizon.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _addNewFaces( eyeVertex, horizon ) {
- this.newFaces = [];
- let firstSideEdge = null;
- let previousSideEdge = null;
- for ( let i = 0; i < horizon.length; i ++ ) {
- const horizonEdge = horizon[ i ];
- // returns the right side edge
- const sideEdge = this._addAdjoiningFace( eyeVertex, horizonEdge );
- if ( firstSideEdge === null ) {
- firstSideEdge = sideEdge;
- } else {
- // joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
- sideEdge.next.setTwin( previousSideEdge );
- }
- this.newFaces.push( sideEdge.face );
- previousSideEdge = sideEdge;
- }
- // perform final join of new faces
- firstSideEdge.next.setTwin( previousSideEdge );
- return this;
- }
- /**
- * Adds a vertex to the hull with the following algorithm:
- *
- * - Compute the 'horizon' which is a chain of half edges. For an edge to belong to this group
- * it must be the edge connecting a face that can see 'eyeVertex' and a face which cannot see 'eyeVertex'.
- * - All the faces that can see 'eyeVertex' have its visible vertices removed from the assigned vertex list.
- * - A new set of faces is created with each edge of the 'horizon' and 'eyeVertex'. Each face is connected
- * with the opposite horizon face and the face on the left/right.
- * - The vertices removed from all the visible faces are assigned to the new faces if possible.
- *
- * @private
- * @param {VertexNode} eyeVertex - The vertex to add.
- * @return {ConvexHull} A reference to this convex hull.
- */
- _addVertexToHull( eyeVertex ) {
- const horizon = [];
- this.unassigned.clear();
- // remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
- this._removeVertexFromFace( eyeVertex, eyeVertex.face );
- this._computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );
- this._addNewFaces( eyeVertex, horizon );
- // reassign 'unassigned' vertices to the new faces
- this._resolveUnassignedPoints( this.newFaces );
- return this;
- }
- /**
- * Cleans up internal properties after computing the convex hull.
- *
- * @private
- * @return {ConvexHull} A reference to this convex hull.
- */
- _cleanup() {
- this.assigned.clear();
- this.unassigned.clear();
- this.newFaces = [];
- return this;
- }
- /**
- * Starts the execution of the quick hull algorithm.
- *
- * @private
- * @return {ConvexHull} A reference to this convex hull.
- */
- _compute() {
- let vertex;
- this._computeInitialHull();
- // add all available vertices gradually to the hull
- while ( ( vertex = this._nextVertexToAdd() ) !== undefined ) {
- this._addVertexToHull( vertex );
- }
- this._reindexFaces();
- this._cleanup();
- return this;
- }
- }
- /**
- * Represents a section bounded by a specific amount of half-edges.
- * The current implementation assumes that a face always consist of three edges.
- *
- * @private
- */
- class Face {
- /**
- * Constructs a new face.
- */
- constructor() {
- /**
- * The normal vector of the face.
- *
- * @private
- * @type {Vector3}
- */
- this.normal = new Vector3();
- /**
- * The midpoint or centroid of the face.
- *
- * @private
- * @type {Vector3}
- */
- this.midpoint = new Vector3();
- /**
- * The area of the face.
- *
- * @private
- * @type {number}
- * @default 0
- */
- this.area = 0;
- /**
- * Signed distance from face to the origin.
- *
- * @private
- * @type {number}
- * @default 0
- */
- this.constant = 0;
- /**
- * Reference to a vertex in a vertex list this face can see.
- *
- * @private
- * @type {?VertexNode}
- * @default null
- */
- this.outside = null; // reference to a vertex in a vertex list this face can see
- this.mark = Visible;
- /**
- * Reference to the base edge of a face. To retrieve all edges, you can use the
- * `next` reference of the current edge.
- *
- * @private
- * @type {?HalfEdge}
- * @default null
- */
- this.edge = null;
- }
- /**
- * Creates a face from the given vertex nodes.
- *
- * @private
- * @param {VertexNode} a - The first vertex node.
- * @param {VertexNode} b - The second vertex node.
- * @param {VertexNode} c - The third vertex node.
- * @return {Face} The created face.
- */
- static create( a, b, c ) {
- const face = new Face();
- const e0 = new HalfEdge( a, face );
- const e1 = new HalfEdge( b, face );
- const e2 = new HalfEdge( c, face );
- // join edges
- e0.next = e2.prev = e1;
- e1.next = e0.prev = e2;
- e2.next = e1.prev = e0;
- // main half edge reference
- face.edge = e0;
- return face.compute();
- }
- /**
- * Returns an edge by the given index.
- *
- * @private
- * @param {number} i - The edge index.
- * @return {HalfEdge} The edge.
- */
- getEdge( i ) {
- let edge = this.edge;
- while ( i > 0 ) {
- edge = edge.next;
- i --;
- }
- while ( i < 0 ) {
- edge = edge.prev;
- i ++;
- }
- return edge;
- }
- /**
- * Computes all properties of the face.
- *
- * @private
- * @return {Face} A reference to this face.
- */
- compute() {
- const a = this.edge.tail();
- const b = this.edge.head();
- const c = this.edge.next.head();
- _triangle.set( a.point, b.point, c.point );
- _triangle.getNormal( this.normal );
- _triangle.getMidpoint( this.midpoint );
- this.area = _triangle.getArea();
- this.constant = this.normal.dot( this.midpoint );
- return this;
- }
- /**
- * Returns the signed distance from a given point to the plane representation of this face.
- *
- * @private
- * @param {Vector3} point - The point to compute the distance to.
- * @return {number} The distance.
- */
- distanceToPoint( point ) {
- return this.normal.dot( point ) - this.constant;
- }
- }
- /**
- * The basis for a half-edge data structure, also known as doubly
- * connected edge list (DCEL).
- *
- * @private
- */
- class HalfEdge {
- /**
- * Constructs a new half edge.
- *
- * @param {VertexNode} vertex - A reference to its destination vertex.
- * @param {Face} face - A reference to its face.
- */
- constructor( vertex, face ) {
- /**
- * A reference to its destination vertex.
- *
- * @private
- * @type {VertexNode}
- */
- this.vertex = vertex;
- /**
- * Reference to the previous half-edge of the same face.
- *
- * @private
- * @type {?HalfEdge}
- * @default null
- */
- this.prev = null;
- /**
- * Reference to the next half-edge of the same face.
- *
- * @private
- * @type {?HalfEdge}
- * @default null
- */
- this.next = null;
- /**
- * Reference to the twin half-edge to reach the opposite face.
- *
- * @private
- * @type {?HalfEdge}
- * @default null
- */
- this.twin = null;
- /**
- * A reference to its face.
- *
- * @private
- * @type {Face}
- */
- this.face = face;
- }
- /**
- * Returns the destination vertex.
- *
- * @private
- * @return {VertexNode} The destination vertex.
- */
- head() {
- return this.vertex;
- }
- /**
- * Returns the origin vertex.
- *
- * @private
- * @return {VertexNode} The destination vertex.
- */
- tail() {
- return this.prev ? this.prev.vertex : null;
- }
- /**
- * Returns the Euclidean length (straight-line length) of the edge.
- *
- * @private
- * @return {number} The edge's length.
- */
- length() {
- const head = this.head();
- const tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceTo( head.point );
- }
- return - 1;
- }
- /**
- * Returns the square of the Euclidean length (straight-line length) of the edge.
- *
- * @private
- * @return {number} The square of the edge's length.
- */
- lengthSquared() {
- const head = this.head();
- const tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceToSquared( head.point );
- }
- return - 1;
- }
- /**
- * Sets the twin edge of this half-edge. It also ensures that the twin reference
- * of the given half-edge is correctly set.
- *
- * @private
- * @param {HalfEdge} edge - The twin edge to set.
- * @return {HalfEdge} A reference to this edge.
- */
- setTwin( edge ) {
- this.twin = edge;
- edge.twin = this;
- return this;
- }
- }
- /**
- * A vertex as a double linked list node.
- *
- * @private
- */
- class VertexNode {
- /**
- * Constructs a new vertex node.
- *
- * @param {Vector3} point - A point in 3D space.
- */
- constructor( point ) {
- /**
- * A point in 3D space.
- *
- * @private
- * @type {Vector3}
- */
- this.point = point;
- /**
- * Reference to the previous vertex in the double linked list.
- *
- * @private
- * @type {?VertexNode}
- * @default null
- */
- this.prev = null;
- /**
- * Reference to the next vertex in the double linked list.
- *
- * @private
- * @type {?VertexNode}
- * @default null
- */
- this.next = null;
- /**
- * Reference to the face that is able to see this vertex.
- *
- * @private
- * @type {?Face}
- * @default null
- */
- this.face = null;
- }
- }
- /**
- * A doubly linked list of vertices.
- *
- * @private
- */
- class VertexList {
- /**
- * Constructs a new vertex list.
- */
- constructor() {
- /**
- * Reference to the first vertex of the linked list.
- *
- * @private
- * @type {?VertexNode}
- * @default null
- */
- this.head = null;
- /**
- * Reference to the last vertex of the linked list.
- *
- * @private
- * @type {?VertexNode}
- * @default null
- */
- this.tail = null;
- }
- /**
- * Returns the head reference.
- *
- * @private
- * @return {VertexNode} The head reference.
- */
- first() {
- return this.head;
- }
- /**
- * Returns the tail reference.
- *
- * @private
- * @return {VertexNode} The tail reference.
- */
- last() {
- return this.tail;
- }
- /**
- * Clears the linked list.
- *
- * @private
- * @return {VertexList} A reference to this vertex list.
- */
- clear() {
- this.head = this.tail = null;
- return this;
- }
- /**
- * Inserts a vertex before a target vertex.
- *
- * @private
- * @param {VertexNode} target - The target.
- * @param {VertexNode} vertex - The vertex to insert.
- * @return {VertexList} A reference to this vertex list.
- */
- insertBefore( target, vertex ) {
- vertex.prev = target.prev;
- vertex.next = target;
- if ( vertex.prev === null ) {
- this.head = vertex;
- } else {
- vertex.prev.next = vertex;
- }
- target.prev = vertex;
- return this;
- }
- /**
- * Inserts a vertex after a target vertex.
- *
- * @private
- * @param {VertexNode} target - The target.
- * @param {VertexNode} vertex - The vertex to insert.
- * @return {VertexList} A reference to this vertex list.
- */
- insertAfter( target, vertex ) {
- vertex.prev = target;
- vertex.next = target.next;
- if ( vertex.next === null ) {
- this.tail = vertex;
- } else {
- vertex.next.prev = vertex;
- }
- target.next = vertex;
- return this;
- }
- /**
- * Appends a vertex to this vertex list.
- *
- * @private
- * @param {VertexNode} vertex - The vertex to append.
- * @return {VertexList} A reference to this vertex list.
- */
- append( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- vertex.next = null; // the tail has no subsequent vertex
- this.tail = vertex;
- return this;
- }
- /**
- * Appends a chain of vertices where the given vertex is the head.
- *
- * @private
- * @param {VertexNode} vertex - The head vertex of a chain of vertices.
- * @return {VertexList} A reference to this vertex list.
- */
- appendChain( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- // ensure that the 'tail' reference points to the last vertex of the chain
- while ( vertex.next !== null ) {
- vertex = vertex.next;
- }
- this.tail = vertex;
- return this;
- }
- /**
- * Removes a vertex from the linked list.
- *
- * @private
- * @param {VertexNode} vertex - The vertex to remove.
- * @return {VertexList} A reference to this vertex list.
- */
- remove( vertex ) {
- if ( vertex.prev === null ) {
- this.head = vertex.next;
- } else {
- vertex.prev.next = vertex.next;
- }
- if ( vertex.next === null ) {
- this.tail = vertex.prev;
- } else {
- vertex.next.prev = vertex.prev;
- }
- return this;
- }
- /**
- * Removes a sublist of vertices from the linked list.
- *
- * @private
- * @param {VertexNode} a - The head of the sublist.
- * @param {VertexNode} b - The tail of the sublist.
- * @return {VertexList} A reference to this vertex list.
- */
- removeSubList( a, b ) {
- if ( a.prev === null ) {
- this.head = b.next;
- } else {
- a.prev.next = b.next;
- }
- if ( b.next === null ) {
- this.tail = a.prev;
- } else {
- b.next.prev = a.prev;
- }
- return this;
- }
- /**
- * Returns `true` if the linked list is empty.
- *
- * @private
- * @return {boolean} Whether the linked list is empty or not.
- */
- isEmpty() {
- return this.head === null;
- }
- }
- export { ConvexHull, Face, HalfEdge, VertexNode, VertexList };
|