VolumeShader.js 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. import {
  2. Vector2,
  3. Vector3
  4. } from 'three';
  5. /**
  6. * @module VolumeShader
  7. * @three_import import { VolumeRenderShader1 } from 'three/addons/shaders/VolumeShader.js';
  8. */
  9. /**
  10. * Shaders to render 3D volumes using raycasting.
  11. * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
  12. * This is not the only approach, therefore it's marked 1.
  13. *
  14. * @constant
  15. * @type {ShaderMaterial~Shader}
  16. */
  17. const VolumeRenderShader1 = {
  18. name: 'VolumeRenderShader1',
  19. uniforms: {
  20. 'u_size': { value: new Vector3( 1, 1, 1 ) },
  21. 'u_renderstyle': { value: 0 },
  22. 'u_renderthreshold': { value: 0.5 },
  23. 'u_clim': { value: new Vector2( 1, 1 ) },
  24. 'u_data': { value: null },
  25. 'u_cmdata': { value: null }
  26. },
  27. vertexShader: /* glsl */`
  28. varying vec4 v_nearpos;
  29. varying vec4 v_farpos;
  30. varying vec3 v_position;
  31. void main() {
  32. // Prepare transforms to map to "camera view". See also:
  33. // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
  34. mat4 viewtransformf = modelViewMatrix;
  35. mat4 viewtransformi = inverse(modelViewMatrix);
  36. // Project local vertex coordinate to camera position. Then do a step
  37. // backward (in cam coords) to the near clipping plane, and project back. Do
  38. // the same for the far clipping plane. This gives us all the information we
  39. // need to calculate the ray and truncate it to the viewing cone.
  40. vec4 position4 = vec4(position, 1.0);
  41. vec4 pos_in_cam = viewtransformf * position4;
  42. // Intersection of ray and near clipping plane (z = -1 in clip coords)
  43. pos_in_cam.z = -pos_in_cam.w;
  44. v_nearpos = viewtransformi * pos_in_cam;
  45. // Intersection of ray and far clipping plane (z = +1 in clip coords)
  46. pos_in_cam.z = pos_in_cam.w;
  47. v_farpos = viewtransformi * pos_in_cam;
  48. // Set varyings and output pos
  49. v_position = position;
  50. gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
  51. }`,
  52. fragmentShader: /* glsl */`
  53. precision highp float;
  54. precision mediump sampler3D;
  55. uniform vec3 u_size;
  56. uniform int u_renderstyle;
  57. uniform float u_renderthreshold;
  58. uniform vec2 u_clim;
  59. uniform sampler3D u_data;
  60. uniform sampler2D u_cmdata;
  61. varying vec3 v_position;
  62. varying vec4 v_nearpos;
  63. varying vec4 v_farpos;
  64. // The maximum distance through our rendering volume is sqrt(3).
  65. const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3
  66. const int REFINEMENT_STEPS = 4;
  67. const float relative_step_size = 1.0;
  68. const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
  69. const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
  70. const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
  71. const float shininess = 40.0;
  72. void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
  73. void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
  74. float sample1(vec3 texcoords);
  75. vec4 apply_colormap(float val);
  76. vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
  77. void main() {
  78. // Normalize clipping plane info
  79. vec3 farpos = v_farpos.xyz / v_farpos.w;
  80. vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
  81. // Calculate unit vector pointing in the view direction through this fragment.
  82. vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
  83. // Compute the (negative) distance to the front surface or near clipping plane.
  84. // v_position is the back face of the cuboid, so the initial distance calculated in the dot
  85. // product below is the distance from near clip plane to the back of the cuboid
  86. float distance = dot(nearpos - v_position, view_ray);
  87. distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
  88. (u_size.x - 0.5 - v_position.x) / view_ray.x));
  89. distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
  90. (u_size.y - 0.5 - v_position.y) / view_ray.y));
  91. distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
  92. (u_size.z - 0.5 - v_position.z) / view_ray.z));
  93. // Now we have the starting position on the front surface
  94. vec3 front = v_position + view_ray * distance;
  95. // Decide how many steps to take
  96. int nsteps = int(-distance / relative_step_size + 0.5);
  97. if ( nsteps < 1 )
  98. discard;
  99. // Get starting location and step vector in texture coordinates
  100. vec3 step = ((v_position - front) / u_size) / float(nsteps);
  101. vec3 start_loc = front / u_size;
  102. // For testing: show the number of steps. This helps to establish
  103. // whether the rays are correctly oriented
  104. //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
  105. //'return;
  106. if (u_renderstyle == 0)
  107. cast_mip(start_loc, step, nsteps, view_ray);
  108. else if (u_renderstyle == 1)
  109. cast_iso(start_loc, step, nsteps, view_ray);
  110. if (gl_FragColor.a < 0.05)
  111. discard;
  112. }
  113. float sample1(vec3 texcoords) {
  114. /* Sample float value from a 3D texture. Assumes intensity data. */
  115. return texture(u_data, texcoords.xyz).r;
  116. }
  117. vec4 apply_colormap(float val) {
  118. val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
  119. return texture2D(u_cmdata, vec2(val, 0.5));
  120. }
  121. void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
  122. float max_val = -1e6;
  123. int max_i = 100;
  124. vec3 loc = start_loc;
  125. // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
  126. // non-constant expression. So we use a hard-coded max, and an additional condition
  127. // inside the loop.
  128. for (int iter=0; iter<MAX_STEPS; iter++) {
  129. if (iter >= nsteps)
  130. break;
  131. // Sample from the 3D texture
  132. float val = sample1(loc);
  133. // Apply MIP operation
  134. if (val > max_val) {
  135. max_val = val;
  136. max_i = iter;
  137. }
  138. // Advance location deeper into the volume
  139. loc += step;
  140. }
  141. // Refine location, gives crispier images
  142. vec3 iloc = start_loc + step * (float(max_i) - 0.5);
  143. vec3 istep = step / float(REFINEMENT_STEPS);
  144. for (int i=0; i<REFINEMENT_STEPS; i++) {
  145. max_val = max(max_val, sample1(iloc));
  146. iloc += istep;
  147. }
  148. // Resolve final color
  149. gl_FragColor = apply_colormap(max_val);
  150. }
  151. void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
  152. gl_FragColor = vec4(0.0); // init transparent
  153. vec4 color3 = vec4(0.0); // final color
  154. vec3 dstep = 1.5 / u_size; // step to sample derivative
  155. vec3 loc = start_loc;
  156. float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
  157. // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
  158. // non-constant expression. So we use a hard-coded max, and an additional condition
  159. // inside the loop.
  160. for (int iter=0; iter<MAX_STEPS; iter++) {
  161. if (iter >= nsteps)
  162. break;
  163. // Sample from the 3D texture
  164. float val = sample1(loc);
  165. if (val > low_threshold) {
  166. // Take the last interval in smaller steps
  167. vec3 iloc = loc - 0.5 * step;
  168. vec3 istep = step / float(REFINEMENT_STEPS);
  169. for (int i=0; i<REFINEMENT_STEPS; i++) {
  170. val = sample1(iloc);
  171. if (val > u_renderthreshold) {
  172. gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
  173. return;
  174. }
  175. iloc += istep;
  176. }
  177. }
  178. // Advance location deeper into the volume
  179. loc += step;
  180. }
  181. }
  182. vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
  183. {
  184. // Calculate color by incorporating lighting
  185. // View direction
  186. vec3 V = normalize(view_ray);
  187. // calculate normal vector from gradient
  188. vec3 N;
  189. float val1, val2;
  190. val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
  191. val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
  192. N[0] = val1 - val2;
  193. val = max(max(val1, val2), val);
  194. val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
  195. val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
  196. N[1] = val1 - val2;
  197. val = max(max(val1, val2), val);
  198. val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
  199. val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
  200. N[2] = val1 - val2;
  201. val = max(max(val1, val2), val);
  202. float gm = length(N); // gradient magnitude
  203. N = normalize(N);
  204. // Flip normal so it points towards viewer
  205. float Nselect = float(dot(N, V) > 0.0);
  206. N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;
  207. // Init colors
  208. vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
  209. vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
  210. vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
  211. // note: could allow multiple lights
  212. for (int i=0; i<1; i++)
  213. {
  214. // Get light direction (make sure to prevent zero division)
  215. vec3 L = normalize(view_ray); //lightDirs[i];
  216. float lightEnabled = float( length(L) > 0.0 );
  217. L = normalize(L + (1.0 - lightEnabled));
  218. // Calculate lighting properties
  219. float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
  220. vec3 H = normalize(L+V); // Halfway vector
  221. float specularTerm = pow(max(dot(H, N), 0.0), shininess);
  222. // Calculate mask
  223. float mask1 = lightEnabled;
  224. // Calculate colors
  225. ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;
  226. diffuse_color += mask1 * lambertTerm;
  227. specular_color += mask1 * specularTerm * specular_color;
  228. }
  229. // Calculate final color by componing different components
  230. vec4 final_color;
  231. vec4 color = apply_colormap(val);
  232. final_color = color * (ambient_color + diffuse_color) + specular_color;
  233. final_color.a = color.a;
  234. return final_color;
  235. }`
  236. };
  237. export { VolumeRenderShader1 };