GeometryUtils.js 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. import { Vector3 } from 'three';
  2. /**
  3. * @module GeometryUtils
  4. * @three_import import * as GeometryUtils from 'three/addons/utils/GeometryUtils.js';
  5. */
  6. /**
  7. * Generates 2D-Coordinates along a Hilbert curve.
  8. *
  9. * Based on work by: {@link http://www.openprocessing.org/sketch/15493}
  10. *
  11. * @param {Vector3} [center] - Center of Hilbert curve.
  12. * @param {number} [size=10] - Total width of Hilbert curve.
  13. * @param {number} [iterations=10] - Number of subdivisions.
  14. * @param {number} [v0=0] - Corner index -X, -Z.
  15. * @param {number} [v1=1] - Corner index -X, +Z.
  16. * @param {number} [v2=2] - Corner index +X, +Z.
  17. * @param {number} [v3=3] - Corner index +X, -Z.
  18. * @returns {Array<Vector3>} The Hilbert curve points.
  19. */
  20. function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {
  21. const half = size / 2;
  22. const vec_s = [
  23. new Vector3( center.x - half, center.y, center.z - half ),
  24. new Vector3( center.x - half, center.y, center.z + half ),
  25. new Vector3( center.x + half, center.y, center.z + half ),
  26. new Vector3( center.x + half, center.y, center.z - half )
  27. ];
  28. const vec = [
  29. vec_s[ v0 ],
  30. vec_s[ v1 ],
  31. vec_s[ v2 ],
  32. vec_s[ v3 ]
  33. ];
  34. // Recurse iterations
  35. if ( 0 <= -- iterations ) {
  36. return [
  37. ...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
  38. ...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
  39. ...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
  40. ...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
  41. ];
  42. }
  43. // Return complete Hilbert Curve.
  44. return vec;
  45. }
  46. /**
  47. * Generates 3D-Coordinates along a Hilbert curve.
  48. *
  49. * Based on work by: {@link https://openprocessing.org/user/5654}
  50. *
  51. * @param {Vector3} [center] - Center of Hilbert curve.
  52. * @param {number} [size=10] - Total width of Hilbert curve.
  53. * @param {number} [iterations=1] - Number of subdivisions.
  54. * @param {number} [v0=0] - Corner index -X, +Y, -Z.
  55. * @param {number} [v1=1] - Corner index -X, +Y, +Z.
  56. * @param {number} [v2=2] - Corner index -X, -Y, +Z.
  57. * @param {number} [v3=3] - Corner index -X, -Y, -Z.
  58. * @param {number} [v4=4] - Corner index +X, -Y, -Z.
  59. * @param {number} [v5=5] - Corner index +X, -Y, +Z.
  60. * @param {number} [v6=6] - Corner index +X, +Y, +Z.
  61. * @param {number} [v7=7] - Corner index +X, +Y, -Z.
  62. * @returns {Array<Vector3>} - The Hilbert curve points.
  63. */
  64. function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {
  65. // Default Vars
  66. const half = size / 2;
  67. const vec_s = [
  68. new Vector3( center.x - half, center.y + half, center.z - half ),
  69. new Vector3( center.x - half, center.y + half, center.z + half ),
  70. new Vector3( center.x - half, center.y - half, center.z + half ),
  71. new Vector3( center.x - half, center.y - half, center.z - half ),
  72. new Vector3( center.x + half, center.y - half, center.z - half ),
  73. new Vector3( center.x + half, center.y - half, center.z + half ),
  74. new Vector3( center.x + half, center.y + half, center.z + half ),
  75. new Vector3( center.x + half, center.y + half, center.z - half )
  76. ];
  77. const vec = [
  78. vec_s[ v0 ],
  79. vec_s[ v1 ],
  80. vec_s[ v2 ],
  81. vec_s[ v3 ],
  82. vec_s[ v4 ],
  83. vec_s[ v5 ],
  84. vec_s[ v6 ],
  85. vec_s[ v7 ]
  86. ];
  87. // Recurse iterations
  88. if ( -- iterations >= 0 ) {
  89. return [
  90. ...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
  91. ...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  92. ...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  93. ...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  94. ...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  95. ...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  96. ...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  97. ...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
  98. ];
  99. }
  100. // Return complete Hilbert Curve.
  101. return vec;
  102. }
  103. /**
  104. * Generates a Gosper curve (lying in the XY plane).
  105. *
  106. * Reference: {@link https://gist.github.com/nitaku/6521802}
  107. *
  108. * @param {number} [size=1] - The size of a single gosper island.
  109. * @return {Array<number>} The gosper island points.
  110. */
  111. function gosper( size = 1 ) {
  112. function fractalize( config ) {
  113. let output;
  114. let input = config.axiom;
  115. for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
  116. output = '';
  117. for ( let j = 0, jl = input.length; j < jl; j ++ ) {
  118. const char = input[ j ];
  119. if ( char in config.rules ) {
  120. output += config.rules[ char ];
  121. } else {
  122. output += char;
  123. }
  124. }
  125. input = output;
  126. }
  127. return output;
  128. }
  129. function toPoints( config ) {
  130. let currX = 0, currY = 0;
  131. let angle = 0;
  132. const path = [ 0, 0, 0 ];
  133. const fractal = config.fractal;
  134. for ( let i = 0, l = fractal.length; i < l; i ++ ) {
  135. const char = fractal[ i ];
  136. if ( char === '+' ) {
  137. angle += config.angle;
  138. } else if ( char === '-' ) {
  139. angle -= config.angle;
  140. } else if ( char === 'F' ) {
  141. currX += config.size * Math.cos( angle );
  142. currY += - config.size * Math.sin( angle );
  143. path.push( currX, currY, 0 );
  144. }
  145. }
  146. return path;
  147. }
  148. //
  149. const gosper = fractalize( {
  150. axiom: 'A',
  151. steps: 4,
  152. rules: {
  153. A: 'A+BF++BF-FA--FAFA-BF+',
  154. B: '-FA+BFBF++BF+FA--FA-B'
  155. }
  156. } );
  157. const points = toPoints( {
  158. fractal: gosper,
  159. size: size,
  160. angle: Math.PI / 3 // 60 degrees
  161. } );
  162. return points;
  163. }
  164. export {
  165. hilbert2D,
  166. hilbert3D,
  167. gosper,
  168. };